Tips for life, tips for tech

 # -*- coding: utf-8 -*-

from yade import pack

############################################
###   DEFINING VARIABLES AND MATERIALS   ###
############################################

# The following 5 lines will be used later for batch execution
nRead=utils.readParamsFromTable(
num_spheres=10000,# number of spheres
compFricDegree = 35, # degree, we will change to rad by function below
unknownOk=True
)
from yade.params import table

num_spheres=table.num_spheres# number of spheres
targetPorosity = 0.3819 # porosity/porosite/n
compFricDegree = table.compFricDegree # initial contact friction during the confining phase (will be decreased during the REFD compaction process)
finalFricDegree = 35 # contact friction during the deviatoric loading
rate=0.02 # loading rate (strain rate)
damp=0.2 # damping coefficient
stabilityThreshold=0.01 # we test unbalancedForce against this value in different loops (see below)
key='_triax_base_' # put you simulation's name here
young=5e6 # contact stiffness
mn,mx=Vector3(-0.05,-0.05,-0.05),Vector3(0.05,0.05,0.05) # corners of the initial packing
thick = 0.01 # thickness of the plates, input whatever/n'importe quel


## create materials for spheres and plates
O.materials.append(FrictMat(young=young,poisson=0.5,frictionAngle=radians(compFricDegree),density=3000,label='spheres'))
O.materials.append(FrictMat(young=young,poisson=0.5,frictionAngle=0,density=0,label='walls'))

## create walls around the packing
walls=utils.aabbWalls([mn,mx],thickness=thick,material='walls')
wallIds=O.bodies.append(walls)

## use a SpherePack object to generate a random loose particles packing
sp=pack.SpherePack()


clumps=False #turn this true for the same example with clumps
if clumps:
## approximate mean rad of the futur dense packing for latter use
volume = (mx[0]-mn[0])*(mx[1]-mn[1])*(mx[2]-mn[2])
mean_rad = pow(0.09*volume/num_spheres,0.3333)
## define a unique clump type (we could have many, see clumpCloud documentation)
c1=pack.SpherePack([((-0.2*mean_rad,0,0),0.5*mean_rad),((0.2*mean_rad,0,0),0.5*mean_rad)])
## generate positions and input them in the simulation
sp.makeClumpCloud(mn,mx,[c1],periodic=False)
sp.toSimulation(material='spheres')
else:
sp.makeCloud(mn,mx,-1,0.3333,num_spheres,False, 0.95)
O.bodies.append([utils.sphere(center,rad,material='spheres') for center,rad in sp])
#or alternatively (higher level function doing exactly the same):
#sp.toSimulation(material='spheres')

############################
###   DEFINING ENGINES   ###
############################

triax=ThreeDTriaxialEngine(
## ThreeDTriaxialEngine will be used to control stress and strain. It controls particles size and plates positions.
## this control of boundary conditions was used for instance in http://dx.doi.org/10.1016/j.ijengsci.2008.07.002
maxMultiplier=1.+2e4/young, # spheres growing factor (fast growth)
finalMaxMultiplier=1.+2e3/young, # spheres growing factor (slow growth)
thickness = thick,
stressControl_1 = False, #switch stress/strain control
stressControl_2 = False,
stressControl_3 = False,
## The stress used for (isotropic) internal compaction
sigma_iso = 100000,
## Independant stress values for anisotropic loadings
sigma1=100000,
sigma2=100000,
sigma3=100000,
internalCompaction=True, # If true the confining pressure is generated by growing particles
Key=key, # passed to the engine so that the output file will have the correct name
)

newton=NewtonIntegrator(damping=damp)

O.engines=[
ForceResetter(),
InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]),
InteractionLoop(
[Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()],
[Ip2_FrictMat_FrictMat_FrictPhys()],
[Law2_ScGeom_FrictPhys_CundallStrack()]
),

GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.8),
triax,
TriaxialStateRecorder(iterPeriod=100,file='WallStresses'+key),
newton
]

#Display spheres with 2 colors for seeing rotations better
Gl1_Sphere.stripes=0
if nRead==0: yade.qt.Controller(), yade.qt.View()

######################################
##   APPLYING CONFINING PRESSURE   ###
######################################

while 1:
O.run(1000, True)
#the global unbalanced force on dynamic bodies, thus excluding boundaries, which are not at equilibrium
unb=unbalancedForce()
#average stress
#note: triax.stress(k) returns a stress vector, so we need to keep only the normal component
meanS=(triax.stress(triax.wall_right_id)[0]+triax.stress(triax.wall_top_id)[1]+triax.stress(triax.wall_front_id)[2])/3
print 'unbalanced force:',unb,' mean stress: ',meanS
if unb<stabilityThreshold and abs(meanS-triax.sigma_iso)/triax.sigma_iso<0.001:
break

O.save('confinedState'+key+'.yade.gz')
print "###      Isotropic state saved      ###"

###################################################
###   REACHING A SPECIFIED POROSITY PRECISELY   ###
###################################################

import sys #this is only for the flush() below
while triax.porosity>targetPorosity:
# we decrease friction value and apply it to all the bodies and contacts
compFricDegree = 0.95*compFricDegree
setContactFriction(radians(compFricDegree))
print "\r Friction: ",compFricDegree," porosity:",triax.porosity,
sys.stdout.flush()
# while we run steps, triax will tend to grow particles as the packing
# keeps shrinking as a consequence of decreasing friction. Consequently
# porosity will decrease
O.run(500,1)

O.save('compactedState'+key+'.yade.gz')
print "###    Compacted state saved      ###"

##############################
###   DEVIATORIC LOADING   ###
##############################

#We move to deviatoric loading, let us turn internal compaction off to keep particles sizes constant
triax.internalCompaction=False

# Change contact friction (remember that decreasing it would generate instantaneous instabilities)
triax.setContactProperties(finalFricDegree)

##set independant stress control on each axis
#triax.stressControl_1=triax.stressControl_2=triax.stressControl_3=True
## We turn all these flags true, else boundaries will be fixed
triax.wall_bottom_activated=False
triax.wall_top_activated=True
triax.wall_left_activated=True
triax.wall_right_activated=True
triax.wall_back_activated=True
triax.wall_front_activated=True


##If we want a triaxial loading at imposed strain rate, let's assign srain rate instead of stress
triax.stressControl_2=0 #we are tired of typing "True" and "False", we use implicit conversion from integer to boolean
triax.strainRate2=rate
triax.strainRate1=100*rate
triax.strainRate3=100*rate

##we can change damping here. What is the effect in your opinion?
newton.damping=0.1

#Save temporary state in live memory. This state will be reloaded from the interface with the "reload" button.
O.saveTmp()

#####################################################
###    Example of how to record and plot data     ###
#####################################################

from yade import plot

## a function saving variables
def history():
plot.addData(e11=triax.strain[0], e22=triax.strain[1], e33=triax.strain[2],
ev=-triax.strain[0]-triax.strain[1]-triax.strain[2],
s11=triax.stress(triax.wall_right_id)[0],
s22=triax.stress(triax.wall_top_id)[1],
s33=triax.stress(triax.wall_front_id)[2],
q=abs(triax.stress(triax.wall_top_id)[1])-abs(triax.stress(triax.wall_front_id)[2]),
i=O.iter)

if 1:
# include a periodic engine calling that function in the simulation loop
O.engines=O.engines[0:5]+[PyRunner(iterPeriod=20,command='history()',label='recorder')]+O.engines[5:7]
#O.engines.insert(4,PyRunner(iterPeriod=20,command='history()',label='recorder'))
else:
# With the line above, we are recording some variables twice. We could in fact replace the previous
# TriaxialRecorder
# by our periodic engine. Uncomment the following line:
O.engines[4]=PyRunner(iterPeriod=20,command='history()',label='recorder')

O.run(100,True)

## declare what is to plot. "None" is for separating y and y2 axis
plot.plots={'i':('e11','e22','e33',None,'s11','s22','s33')}
## the traditional triaxial curves would be more like this:
#plot.plots={'e22':('s11','s22','s33',None,'ev')}

plot.plots={'e22':('q')}
## display on the screen (doesn't work on VMware image it seems)
plot.plot()

#####  PLAY THE SIMULATION HERE WITH "PLAY" BUTTON OR WITH THE COMMAND O.run(N)  #####

## In that case we can still save the data to a text file at the the end of the simulation, with:
plot.saveDataTxt('results'+key)
##or even generate a script for gnuplot. Open another terminal and type  "gnuplot plotScriptKEY.gnuplot:
#plot.saveGnuplot('plotScript'+key)


 

Comments on: "The first example, hopefully" (5)

  1. Yeah! said:

    makeCloud([(Vector3)minCorner=Vector3(0, 0, 0)[, (Vector3)maxCorner=Vector3(0, 0, 0)[, (float)rMean=-1[, (float)rRelFuzz=0[, (int)num=-1[, (bool)periodic=False[, (float)porosity=0.65[, (object)psdSizes=[][, (object)psdCumm=[][, (bool)distributeMass=False[, (int)seed=0[, (Matrix3)hSize=Matrix3(0, 0, 0, 0, 0, 0, 0, 0, 0)]]]]]]]]]]]]) → int
    https://yade-dem.org/doc/yade.pack.html?highlight=makecloud#yade._packSpheres.SpherePack.makeCloud

  2. Hiểu nà, hiểu nà!!!

  3. Yeah! said:

    Chuyên gia chỉ bảo cho em :”> code em nó chạy sai bét nhè chuyên gia ạ :”> =))))))))))))

  4. Phải tự tìm hiểu và khắc phục thì mới mau khá được, chậc chậc :)))

Reply in English

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Tag Cloud

%d bloggers like this: